y

Drawing With Cocoa

Session 305

y

Drawing With Cocoa

John C. Randolph
Sr. Software Engineer
Apple Worldwide Developer Relations

What We’'ll Cover

* How to draw using the Cocoa frameworks
* The Cocoa classes involved in 2D rendering

* Manipulating the coordinate space
* [mages, paths, and text

* How the Quartz drawing model is reflected
in the Cocoa framework

The Quartz 2D Imaging Model

* Familiar from Postscript, PDF, SVG

* Paths are described in terms of instructions
for moving a pen in a two-dimensional space

* Paths consist of elements including moves,
lines, curves, and character glyphs

* Paths can be stroked with a given line width,
filled with a pattern, stroked with a dashed
line style, etc.

The Quartz 2D
Imaging Model (Cont.)

* Alpha-channel (transparency) support
» Can use pre-multiplied images

* Rich set o

- compositing operators

e 14 di
e Uses

ferent compositing modes
both source and destination alpha

» Use CompositeLab to try them out

Some Good Advice

*In Cocoa development, concentrate on
the code that is unique to your application

* Do not reinvent the wheel

* Change the environment to make your
work easier

* As a friend of mine has said on many
0CCasions . .

“Use the Kit, Luke!”

* First, see if there is an easy way to do what
you want to do

* Many common drawing tasks can be done
with high-level AppKit classes

* Paths, colors, text, images, and coordinate
transtormations all have associated
AppKit classes

Where Do I Draw?

* Drawing destination

» Objects that implement -lockFocus
and -unlockFocus

* NSView
» A “Rectangle of Responsibility” in a window
* NSImage

» A high-level, resolution-independent
abstraction of images

NSView

* Provides a class for drawing, printing and
handling events

* An NSView has its own coordinate space

* NSViews are arranged in a hierarchy within
a window

What Is NSImage?

* A high-level abstraction for images

* A container for NSImageRep instances

* Both a thing to draw, and a place to draw

* Use NSImage to load .tiff, .jpeg, .gif, .pdf,
and other image file types

* Use NSImage as a destination for off-screen
drawing

Demo

Tinted Image

What I Did Wrong
in That Demo

* [was not very memory-efficient

* This could be improved by re-using a
“scratchpad” image, instead of creating and
discarding a new tinted image every time

NSColor

* Represents not only colors, but “meta” colors,
“catalog” colors, patterns, . .

* To paint with an NSColor, send it a -set message
* To create an NSColor, use methods such as:

+colorWithPatternlmage:, +whiteColor,
+colorWithCalibratedRed: green: blue: alpha:,
+controlHighlightColor

NSImage Pitfalls

* Check the size!

» The pixel dimensions are not the same
thing as the image size. Use the -size and
-setSize: methods

* Many apps get this wrong, so be alert
* Drawing scaled images

-composite... aAnd -dissolve... methods behave
differently than -drawinRect... methods

Upcoming Features of NSImage

* Progressive display

» The delegate will be notified when the size
is known, when chunks of pixels arrive, and
when the entire image is finished loading

* Support for multi-frame images (animated GIFs)
» The frames become one long bitmap

The Quartz Coordinate System

*We stole it from Rene Descartes: the origin

is in the lower-left corner
(x,y)

LP (x.x)

(0,0)

* Coordinates are floating-point values

e Whole-number coordinates land between
screen pixels

The Quartz Coordinate
System (Cont.)

e [f it is inconvenient, change it!

* An Nsview’s coordinate system can be rotated,
scaled, and translated with methods like

-rotateByAngle:, -scaleUnitSquareToSize:,

-translateOriginToPoint:, and -setBoundsRotation:

* The NsAffineTransform class describes any
combination of scaling, translation, and rotation

The Frame Rectangle

* The rectangle describing a view’s location and
size in its Ssuperview’s coordinate space

o Get it with the -frame method

» Change it with -setFrame and
-setFrameRotation:

The Bounds Rectangle

® Describes the size of the view in its own
coordinate space

* Defines the location of the origin

* Change it with -setBoundssSize:, -setBounds:,
-setBoundsRotation:, -setBoundsOrigin:
-translateOriginToPoint:, -rotateByAngle:
-scaleUnitSquareToSize:,

NSAffineTransform

* An object that describes operations on a
coordinate space

* [t has many of the same methods as NSView for

changing a coordinate space: -rotateByDegrees:,
-translateXBy:yBy:, -scaleBy:

* Transform operations can be combined using

-appendTransform: and -prependTransform:

NSAftineTransform (Cont.)

*[have set up my NSAffineTransform,
how do I use it?

* Operations on objects and data: -transformPoint:
-transformSize:, -transformBezierPath:

* Apply it to the current drawing context:
-set, -concat

s

-
Demo

Transformed View

What I Did Wrong
in That Demo

* Drawing too much

» [could have only drawn the parts that
Changed, USing -setNeedsDisplayinRect:

s

-
Demo

Transformed Image

What Did I Do
Wrong This Time?

* Nothing! It was perfect

NSBezierPath

* This is how you should do most
vector-based drawing

* Encapsulates the Quartz 2D drawing model

o Path construction methods
-moveTo:, -lineTo:, -curveTo:
-appendBezierPathWith...

» Path attributes
-linedoin, -lineWidth, -miterLimit,- flathess

» Drawing the Path
-fill, -stroke

NSBezierPath (Cont.)

* Convenience methods:
+strokeLineFromPoint:toPoint:
+fillRect:, +bezierPathWithOvallnRect:

*Add

your Own:
[f there is a shape you use a lot, add a

method to NSBezierPath to draw it

s

-
Demo

StringArt View

What I Did Wrong This Time . .

* [nefficient drawing!

* Clearing/redrawing the entire bounds

» I should just clear the rectangle passed
t0 me in -drawRect:

» [did not re-use the bezierpath
* Made lame excuses because it is just a demo

NSBezierPath Considerations

* The rasterizer charges by the intersection

* Take care with pixel placement when
stroking a path

* Check whether you are drawing for the
screen or the printer

The Graphics State

* Looking for gsave and grestore?
*You just found them!

* The NSGraphicsState class keeps a stack
of graphics states, just like Postscript

* NSGraphicsState methods: + saveGraphicsState,
+ restoreGraphicsState, - setShouldAntiAlias:

+ currentContextDrawingToScreen, CtC.

Kit Functions and Macros

* Rectangle drawing functions

« NSRectFill(), NSRectFillList(),
NSRectFillListWithColors(), NSRectFillUsingOperation(),
NSRectFillListWithColorsUsingOperation()

* Geometry Conveniences

- NSDivideRect(), NSContainsRect(), NSEqualRects(),
NSMakeRect(), NSMouselnRect(), NSHeight(),

NSWidth(), NSMinX, NSMaxY(), and so on . .

* [f you think it should be there, look for it;
[t probably exists

Drawing Strings

* The AppKit adds drawing methods to NSString:
-drawAtPoint:withAttributes:,

-drawinRect:withAttributes:,
-sizeWithAttributes:

* . .And to NSAttributedString:
-drawAtPoint: -drawinRect:, -size

Drawing With NSCell

* Cells are objects that draw themselves in Views

e Use a Cell when the overhead of an NSView
IS nOt necessary

* The AppKit includes NSCell classes for drawing
images and text

Drawing With NSCell (Cont.)

* Use a Cell for drawing lines or blocks
of editable text

* Cells can be re-used, as in NSBrowser
and NSTableView

* NSControl subclasses typically have a
cell do all their drawing

Drawing With NSCell (Cont.)

* A cell is often a good starting point for your
custom drawing

* Cells do their drawing in -drawlnRect:inView:

*[n a cell subclass, you can use the inherited
drawing behavior

Demo

Cells and Views

Conclusion

*We saw how to draw using the classes in
the Cocoa framework

* And how to do some sophisticated things
with not much code at all

Cocoa: Simple things simple,
Complex things possible

Cocoa Documentation

* Object-Oriented Programming and the Objective-C Language
* Programming Topics
» Application Architecture
Memory Management
Foundation Framework
Multithreading
Loading Resources

Notifications
and many more!

Documentation > Cocoa p
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html ‘

For More Information

* O'Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

* Cocoa Developer Documentation

http:/developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

* Apple Customer Training
http://train.apple.com/

Roadmap

300 Introduction to Cocoa:

: Room A1
What is Cocoa? Mon., 5:00pm
301 Cocoa: What’s New? Civic

Tues., 9:00am

303 Cocoa Scripting:
Scripting overview and recent changes

Room A2
Thurs., 10:30am

304 Cocoa Controls and
Cocoa Accessibility

Overview of controls; new Accessibility APIs

Room A2
Thurs., 5:00pm

Roadmap

305 Cocoa Drawing: Hall 2

Drawing using Cocoa APIs Fri., 10:30am
In-depth overview of the text system Fri., 2:00pm
Comments and suggestions for Cocoa Fri., 5:00pm

Who to Contact

Heather Hickman
Cocoa Technology Manager

Apple Worldwide Developer Relations
hhickman@ @apple.com

Cocoa Feedback
cocoa-feedback@group.apple.com

Cocoa Development Mailing List

Subscribe at
www.lists.apple.com/mailman/listinfo/cocoa-dev

’

http://developer.apple.com/wwdc2002/urls.html '

Cocoa Frameworks Teams

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

